Nonlinear Classifiers II

Nonlinear Classifiers: Introduction

- Classifiers
 - Supervised Classifiers
 - Linear Classifiers
 - Perceptron
 - Least Squares Methods
 - Linear Support Vector Machine
 - **Nonlinear Classifiers**
 - Part I: Multi Layer Neural Networks
 - **Part II: Polynomial Classifier, RBF, Nonlinear SVM**
 - Decision Trees
 - Unsupervised Classifiers
Nonlinear Classifiers: Agenda

Part II: Nonlinear Classifiers

- **Polynomial Classifier**
 - Special case of a Two-Layer Perceptron
 - Activation function with non linear input

- **Radial Basis Function Network**
 - Special case of a two-layer network
 - Radial Basis activation Function
 - Training is simpler and faster

- **Nonlinear Support Vector Machine**

Polynomial Classifier: XOR problem

- XOR problem with polynomial function.
 - With nonlinear polynomial function classes can be classified.
 - Example XOR-Problem:

![Diagram of XOR problem](image-url)
Polynomial Classifier: XOR problem

• XOR problem with polynomial function.
 • With nonlinear polynomial functions, classes can be classified.
 • Example XOR-Problem:

\[\phi : X \rightarrow H \]

\[z = \phi(x) \]

...but with a polynomial function!

Polynomial Classifier: XOR problem

With \(z = \begin{bmatrix} x_1 \\ x_2 \\ x_1 x_2 \end{bmatrix} \) we obtain:

\[\phi(0,0) \rightarrow (0,0,0) \]
\[\phi(0,1) \rightarrow (0,1,0) \]
\[\phi(1,0) \rightarrow (1,0,0) \]
\[\phi(1,1) \rightarrow (1,1,1) \]

... that's separable in \(H \) by the Hyperplane:

\[g(z) = \frac{1}{4} - 1z_1 - 1z_2 + 2z_3 = 0 \]
Polynomial Classifier: XOR problem

Hyperplane: \(g(y) = w \cdot y + w_0 = 0 \)

\[g(z) = \frac{1}{4} - z_1 - z_2 + 2z_3 = 0 \]

is Hyperplane in \(H \)

\[g(x) = \frac{1}{4} - x_1 - x_2 + 2x_1x_2 \]

is Polynom in \(X \)

<table>
<thead>
<tr>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(z_1)</th>
<th>(z_2)</th>
<th>(z_3)</th>
<th>(\omega)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>A (true)</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>B (false)</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>B (false)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>A (true)</td>
</tr>
</tbody>
</table>

Decision Surface in \(X \)

\[g(z) = \frac{1}{4} - 1x_1 - 1x_2 + 2x_1x_2 \geq 0 \quad x \in A \]

\[< 0 \quad x \in B \]

\[x_z = (x_1 - 0.25)/(2x_1 - 1) \]

MatLab:

```matlab
>> x1=[-0.5:0.1:1.5];
>> x2=(x1-0.25)/(2*x1-1);
>> plot(x1,x2);
```
Polynomial Classifier: XOR problem

- With nonlinear polynomial functions, classes can be classified in original space X.
 - Example: XOR-Problem

$$ z = \phi(x) $$

was not linear separable!
... but linear separable in H!
... and separable in X with a polynomial function!

Polynomial Classifier

more general

- Decision function is approximated by a polynomial function $g(x)$, of order p e.g. $p = 2$:

$$ g(x) = w_0 + \sum_{i=1}^{l} w_i x_i + \sum_{i=1}^{l} \sum_{m=1}^{l-1} w_{mn} x_i x_m + \sum_{i=1}^{l} w_{mi} x_i^2 $$

$$ g(x) = w^T \bar{z} + w_0, $$

with

$$ w^T = [w_1, w_2, w_{12}, w_{11}, w_{22}], $$

$$ \bar{z} = [x_1, x_2, x_1 x_2, x_1^2, x_2^2]^T \text{ and } x = [x_1, x_2]^T $$

- Special case of a Two-Layer Perceptron
- Activation function with polynomial input
Nonlinear Classifiers: Agenda

Part II: Nonlinear Classifiers

- Polynomial Classifier
- **Radial Basis Function Network**
 - Special case of a two-layer network
 - Radial Basis activation Function
 - Training is simpler and faster
- Nonlinear Support Vector Machine
- Application: ZIP Code, OCR, FD (W-RVM)
- Demo: libSVM, DHS or Hlavac

Radial Basis Function

- Radial Basis Function Networks (RBF)
 - Choose \(g(x) = w_0 + \sum_{i=1}^{k} w_i g_i(x) \)
 with \(g_i(x) = \exp \left(\frac{-\|x - \hat{c}_i\|^2}{2\sigma_i^2} \right) \)
Radial Basis Function

\[g(x) = w_0 + \sum_{i=1}^{k} w_i g_i(x) \]

with \(g_i(x) = \exp \left(-\frac{(x - c_i)^2}{2\sigma_i^2} \right) \)

Examples:

\[
\begin{align*}
&c_i = 2.5, 0.0, 1.0, 1.5, 2.0, \\
&t = 1, \ldots, k, \\
&k = 5, \\
&\sigma = 1/\sqrt{2}
\end{align*}
\]

How to choose \(c, \sigma, k \)?

Radial Basis Function

- Radial Basis Function Networks (RBF)
 - Equivalent to a single layer network, with RBF activations and linear output node.
Radial Basis Function: XOR problem

\[\xi = \phi(x) \]

\[g(x) = z_1 + z_2 - 1 = 0 \]
\[g(x) = \exp(-\|x - c_1\|^2) + \exp(-\|x - c_2\|^2) - 1 = 0 \]

... not linear separable pattern set in \(X \).
... separable using a nonlinear function (RBF) in \(X \) that separates the set in \(H \) with a linear decision hyperplane!

Radial Basis Function

- Decision function as summation of \(k \) RBF’s

\[g(x) = w_0 + \sum_{i=1}^{k} w_i \exp\left(-\frac{(x - c_i)^T(x - c_i)}{2\sigma_i^2}\right) \]

- Training of the RBF networks
 1. Fixed centers: Choose centers randomly among the data points. Also fix \(\sigma_i \)'s. Then \(g(x) = w_0 + w^T \xi \) is a typical linear classifier design.
 2. Training of the centers: This is a nonlinear optimization task.
 3. Combine supervised and unsupervised learning procedures.
 4. The unsupervised part reveals clustering tendencies of the data and assigns the centers at the cluster representatives.
Nonlinear Classifiers: Agenda

Part II: Nonlinear Classifier

- Polynomial Classifier
- Radial Basis Function Network
- **Nonlinear Support Vector Machine**
 - Application: ZIP Code, OCR, FD (W-RVM)
 - Demo: libSVM, DHS or Hlavac

Nonlinear Classifiers: SVM

XOR problem:

- linear separation in high dimensional space H via nonlinear functions (polynomial and RBF’s) in the original space X.
- for this we found nonlinear mappings $\phi(x): X \rightarrow H$

Is that possible without knowing the mapping function ϕ ?!?
Non-linear Support Vector Machines

- Recall that, the probability of having linearly separable classes increases as the dimensionality of feature vectors increases.

Assume the mapping:

$$x \in \mathbb{R}^l \rightarrow z \in \mathbb{R}^k, \quad k > l$$

\[\rightarrow\] Then use linear SVM in \(\mathbb{R}^k\)

Non-linear SVM

- **Support Vector Machines:** with \(x \rightarrow z \in \mathbb{R}^k\)

- Recall that in this case the dual problem formulation will be

$$\max_{\lambda} \left(\sum_{i=1}^{N} \lambda_i - \frac{1}{2} \sum_{i,j} \lambda_i \lambda_j y_i y_j z_i^T z_j \right)$$

where \(z_i \in \mathbb{R}^k\), \(y \in \{-1, 1\}\) (class labels)

- the classifier will be

$$g(z) = w^T z + w_0$$

$$= \sum_{i=1}^{N} \lambda_i y_i z_i^T z + w_0$$
Non-linear SVM

- Thus, only inner products in a high dimensional space are needed!

=> Something clever (kernel trick):
Compute the inner products in the high dimensional space as functions of inner products performed in the low dimensional space!!!
Non-linear SVM

- Mercer’s Theorem

Let \(x \rightarrow \phi(x) \in H \)

To guarantee that the symmetric function \(K(x_i, x_j) \) (kernel) can be represented as

\[
\sum_r \phi_r(x_i)\phi_r(x_j) = K(x_i, x_j)
\]

that is an inner product in \(H \),

it is necessary and sufficient that

\[
\int K(x_i, x_j) g(x_i)g(x_j) \, dx_i dx_j \geq 0 \quad (1)
\]

for any \(g(x) \):

\[
\int g^2(x) \, dx < +\infty \quad (2)
\]

Non-linear SVM

- Kernel Function

- So, any kernel \(K(x, y) \) satisfying (1) & (2), corresponds to an inner product in SOME space!!!

- Kernel trick: We do not have to know the mapping function, but for some kernel functions we try to linearly separate pattern sets in a high dimensional space only using a function of the inner product in the original space.
Non-linear SVM

- **Kernel Functions:** Examples
 - Polynomial: \(K(x_i, x_j) = (x_i^T x_j + 1)^q, \quad q > 0 \)
 - Radial Basis Functions:
 \[
 K(x_i, x_j) = \exp\left(-\frac{||x_i - x_j||^2}{\sigma^2}\right)
 \]
 - Hyperbolic Tangent:
 \[
 K(x_i, x_j) = \tanh(\beta x_i^T x_j + \gamma)
 \]
 for appropriate values of \(\beta, \gamma \)
 (e.g. \(\beta = 2 \) and \(\gamma = 1 \)).

Support Vector Machines Formulation

- Step 1: Choose appropriate kernel. This implicitly assumes a mapping to a higher dimensional (yet, not known) space.
Non-linear SVM

SVM Formulation

• Step 2:

\[\hat{\lambda} = \arg \max_\lambda \left(\sum_{i} \lambda_i - \frac{1}{2} \sum_{i,j} \lambda_i \lambda_j y_i y_j K(x_i, x_j) \right) \]

subject to: \[0 \leq \lambda_i \leq C, \quad i = 1, 2, \ldots, N \]
\[\sum_i \lambda_i y_i = 0 \]

This results to an implicit combination

\[w = \sum_{i=1}^{N} \lambda_i y_i \Phi(x_i) \]

Non-linear SVM

- SVM Formulation

• Step 3: Assign \(x \) to

\[\omega_1 \text{ if } g(x) = \sum_{i=1}^{N} \lambda_i y_i K(x_i, x) + w_0 \geq 0 \]
\[\omega_2 \text{ if } g(x) = \sum_{i=1}^{N} \lambda_i y_i K(x_i, x) + w_0 < 0 \]
Non-linear SVM

- **SVM: The non-linear case**
 - The SVM Architecture
 - SVM special case of a two-layer neural network with special activation function and a different learning method.
 - Their attractiveness comes from their good generalization properties and simple learning.

![Diagram of SVM architecture](image)

Non-linear SVM

- **Linear SVM – Pol. SVM** in the input space X

![Graph showing linear SVM and polynomial SVM](image)

Training Error: 0.276
Test Error: 0.268
Bayes Error: 0.210
Non-linear SVM

- Pol. SVM – RBF SVM in the input space X

Nonlinear Classifiers: SVM

- Pol. SVM – RBF SVM in the input space X
Nonlinear Classifiers: SVM

- **Software**

 - **SVMlight**: Thorsten Joachims - free software in C, known for quality and speed.

 - **LIB SVM**: free software based on Platt’s SMO algorithm and Joachims code, written by Chih-Chung Chang and Chih-Jen Lin.

 - **Equiols**: Commercial software package which automates the tuning and model selection with SVMs